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Chronic pain susceptibility is associated with
anhedonic behavior and alterations in the accumbal
ubiquitin-proteasome system
Marco Rafael Guimarãesa,b, Sandra Isabel Anjoc,d, Ana Margarida Cunhaa,b, Madalena Estevesa,b, Nuno Sousaa,b,
Armando Almeidaa,b, Bruno Manadasc, Hugo Leite-Almeidaa,b,*

Abstract
It remains unknown why on similar acute/subacute painful conditions, pain persists in some individuals while in others it resolves.
Genetic factors, mood, and functional alterations, particularly involving the mesolimbic network, seem to be key. To explore potential
susceptibility or resistance factors, we screened a large population of rats with a peripheral neuropathy and we isolated a small subset
(,15%) that presented high thresholds (HTs) tomechanical allodynia (reduced painmanifestation). The phenotypewas sustained over
12weeks andwas associatedwith higher hedonic behavior whencomparedwith low-threshold (LT) subjects. The nucleus accumbens
of HT and LT animals were isolated for proteomic analysis by Sequential Window Acquisition of All Theoretical Mass Spectra. Two
hundred seventy-nine proteins displayed different expression between LT and HT animals or subjects. Among several protein families,
the proteasome pathway repeatedly emerged in gene ontology enrichment and KEGG analyses. Several alpha and beta 20S
proteasome subunits were increased in LT animals when compared with HT animals (eg, PSMa1, PSMa2, and PSMb5). On the
contrary, UBA6, an upstream ubiquitin-activating enzyme, was decreased in LT animals. Altogether these observations are consistent
with an overactivation of the accumbal proteasome pathway in animals that manifest pain and depressive-like behaviors after a
neuropathic injury. All the proteomic data are available through ProteomeXchange with identifier PXD022478.
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1. Introduction

Chronic pain (CP) is a complex and incapacitating disorder with a
significant impact on individuals and society.18,49,75 It is
commonly associated with sensory disturbances, morphofunc-
tional brain reorganization,13,36 and behavioral alterations—see
for instances Refs. 30,58,60.

Mechanisms involved in the transition from acute to CP are still
poorly understood.7 In humans, the nucleus accumbens (NAc)
seems to be key in this regard as its functional connectivity was
shown to be predictive of pain trajectories12—see also Ref. 77. Data
from preclinical studies demonstrate that this area is affected at
multiple levels by CP—see for review Refs. 17,63,71—including
decreased activity,69 altered functional connectivity with other brain

regions such as the prefrontal cortex and hippocampus,11,16,23

increased number of accumbal newborn neurons,39 and decreased
dopamine and opioid receptor levels10,23—cf. with.78 In addition,
pain relief was associated with a transient increase in accumbal
dopamine52,79 (conflicting evidence exists regarding basal levels—
see Ref. 29 and references within) and optogenetic activation of the
NAc-ameriolated pain.34 Finally, because of NAc’s well-established
role in motivated behavior and executive function, the morphofunc-
tional alterationsdescribedcanalsoprovide abiological substrate for
the emotional and cognitive alterations observed in CP28,55–57; see
for comprehensive reviews.30 For instance, it wasdemonstrated that
decreased motivation in preclinical CP models required depression
of excitatory synaptic transmission through galanin receptor 1 in the
NAcmedium spiny neurons.70 However, contrary to clinical studies,
in which pain trajectories are evaluated, in experimental CP studies,
lesioned and nonlesioned (sham-operated) subjects are normally
compared, which impedes to uncover pain resilience/susceptibility
phenotypes.

We, therefore, took advantage of the fact that in Sprague Dawley
(SD) rats a small subset of neuropathic rats does not develop
hypersensitivity,37,45 and we compared susceptible (painful) and
resistant (painless) accumbal protein-level differences by Sequential
Window Acquisition of All Theoretical Mass Spectra (SWATH-MS).

2. Material and methods

2.1. Experimental subjects and neuropathic pain model

An initial population of seventy-two 2-month old males SD animals
(Charles River Laboratories, Barcelona, Spain) was used. Animals
were pair-housed in standard plastic cages with food and water
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available ad libitum, in a roomwith controlled temperature (2261˚C)
and humidity (55%-60%), and in a 12-hour light/dark cycle (lights on
at 8 AM). All procedures involving animals were approved by the
respective local organizations, and the experiments were performed
according to the European Community Council Directive 2010/63/
EU guidelines. The spared nerve injury (SNI) model was used in all
experiments.31 Briefly, the right sciatic nerve was exposed, and an
unilateral ligation and subsequent distal axotomy of the tibial and
common peroneal nerves was performed. The sural nerve was
spared. Surgical procedures were performed under deep anesthe-
sia obtained with an intraperitoneal injection (i.p.) 1.5:1.0 mixture of
ketamine (Imalgene, 100 mg·mL21; Merial, Lyon, France) and
medetomidine (Domitor, 1mg·mL21;OrionPharma, Espoo, Finland)
at a dose of 1 mg·kg21.35

2.2. Allodynia

Mechanical allodynia (a hallmark manifestation of neuropathic
pain) was evaluated weekly until the end of the experiment by an
experimenter blinded to the experiment. Before SNI, animals
were habituated to the experimental setting—a small compart-
ment on an elevated grid—for 5minutes. In subsequent sessions,
mechanical allodynia was assessed using the up-and-down
method.24 Briefly, the sural dermatome was probed with a series
of von Frey (VF)-calibrated monofilaments: 15.0, 8.0, 6.0, 4.0,
2.0, 1.0, 0.6, and 0.4 g (North Coast Medical Inc). Starting with
the 2.0 g filament, the test would advance upward if no response
was elicited (50) or downward if a brisk withdraw of the limb was
produced (5X) until 6 measurements were obtained around the
threshold point. If no response was obtained up to maximal force
(15.0 g) or conversely, if all filaments elicited a response down to
theminimal force (0.4 g), the values 15 and 0.25were assumed as
the 50% withdrawal threshold, respectively. Paw movements
associated with locomotion or weight shifting were ignored. The
50% response threshold was then calculated using the following
formula:

50%  g  Threshold ¼
�
10Xf 1 k:d

�

10000

where Xf is the value (in log units) of the final VFmonofilament, k
is the tabular value corresponding to the pattern of positive and
negative responses (X and 0 sequence), and d is the mean
difference (in log units) between stimuli (0.224). After 4 weeks,
animals with the highest and lowest thresholds—high-threshold
(HT; n55) and low-threshold (LT; n 5 5) groups, respectively—
were selected for the subsequent analysis.

2.3. Anhedonia

Anhedonia was assessed by the sucrose preference test, as
previously described.2 At the end of the experiment, animals were
food and water deprived for 12 hours. During the dark phase, 2
preweighed bottles containing water or a 2% (m/v) sucrose
solution were presented to individually housed animals for 1 hour
(test started at 8:30 PM). The anhedonia levels are negatively
correlated with the percentage of sucrose intake (sucrose intake/
[sucrose intake 1 water intake]).

2.4. Protein quantification by Sequential WindowAcquisition
of All Theoretical Mass Spectra

Animals were perfused transcardially with ice-cold sodium
chloride 0.9% (NaCl) under deep sodium pentobarbital

anesthesia (200mg·kg21 i.p.; Eutasil, Ceva Saúde Animal, Algés,
Portugal). Brains were collected, and the left and right NAc
macrodissected and immediately frozen (280˚C) until use.
Samples from LT and HT animals were thawed and ultra-
sonicated (in 130 W Ultrasonic Processor with the following
settings: 60% amplitude, 1 second on/off cycles, for 1-minute
total sonication) in 200 mL of 50 mM of Tris-HCl, pH 7.4, with
protease and phosphatase inhibitors. Samples were then
centrifugated at 5000g for 5 minutes at 4˚C, and supernatants
were collected. To improve the extraction yield, pellets were
resuspended in 100 mL of fresh buffer and subjected to an
additional step of sonication. After centrifugation, the superna-
tants were collected. Samples were quantified using the 2-D
Quant Kit (GE Healthcare, Madrid, Spain), and 100 mg of each
sample were subjected to trypsin digestion using the Short-
GeLC4 for subsequent quantitative analysis by SWATH-MS.5

Before electrophoresis, 1mg of the recombinant proteinmaltose-
binding protein - green fluorescent protein (MBP-GFP)—was
added to each sample to account for sample processing
variation,6 and samples were denatured, reduced, and alkylated
with acrylamide. In addition to the individual replicates, pooled
samples (one per condition) were created to be used in
information-dependent acquisition experiments to build a spe-
cific protein library for SWATH-MS analysis. These pooled
samples were spiked with the recombinant protein and digested
using the same condition of the individual replicates. Samples
were analyzed on a TripleTOF 5600 System (AB Sciex) as
previously described.5 For more detailed information see
supplementary information and supplementary table S1 (available
at http://links.lww.com/PAIN/B262). The mass spectrometry
proteomics data have been deposited to the ProteomeXchange
Consortium32 through the PRIDE66,67 partner repository with the
data set identifier PXD022478.

2.5. Functional annotation

Gene ontology (GO) enrichment analysis, considering the bi-
ological process category,9,21 and KEGG pathways of identified
proteins, were performed using the combination of AmiGO and
David Bioinformatics Resources22,46,47 with the statistical Fisher
exact test associated and a P-value of 0.05 as the cutoff (see
supplementary tables S2 and S3, respectively, from the
supplementary information, available at http://links.lww.com/
PAIN/B262). Enrichment complexes analysis was performed at
ConsensusPathDB Bioinformatics resource.50 Complexes were
considered whenever 20% of identified proteins were part of that
complex at a cutoff P value of 0.05.

The heatmaps from the quantified proteins were performed in
Morpheus (https://software.broadinstitute.org/morpheus/). Each
row corresponds to a different protein, with their relative levels
normalized to values between 0 and 1.

2.6. Statistical analysis

Statistical evaluation for protein quantifications was performed
by the Mann–Whitney U test for single comparisons. For the
analysis of repeated measures, a two-way analysis of variance
with the Bonferroni test for multiple comparisons was used.
Statistical analysis between 2 groups was made using the
Student t test. The statistical analyses were performed in the
SPSS statistic program (version 24; IBM Co). Data are
presented as mean 6 SEM. The significance value was set at
P , 0.05.
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Figure 1.Characterization and quantitative proteomics profile of contralateral and ipsilateral NAc of LT andHT animals.Mechanical allodynia was assessedweekly
after SNI installation in SD males. Animals with high thresholds (HTs) present reduced hypersensitivity to von Frey monofilaments than low-threshold (LT)
animals (A). Although no differences were found in body weight gain (B) LT animals present an anhedonic-like phenotype in the sucrose preference test (SPT; C).
Representative image of a sagittal and coronal section of NAc (D). Differential proteomics analysis (volcano plot and heatmap) of the contralateral NAc of HT and LT
animals and the 2178 proteins quantified in the contralateral NAc and a heatmap representation of the 199 altered proteins (76 upregulated and 123
downregulated) in the Log2 (HT/LT) comparison (E). The same statistical analysis was performed in the ipsilateral NAc, and we obtained 99 altered proteins (29
upregulated and 72 downregulated) in the HT/LT comparison (F). From all the significantly altered proteins, 21 proteins are altered in both contralateral and
ipsilateral NAc (G). Their relative expression in both groups and brain side (H) reveals that most of them have the same fold-change tendency in both HT and LT
animals. Data presented as mean6 SEM; Two-way analysis of variance repeated measures were used in mechanical allodynia evolution, and the Mann–Witney
U test andStudent t test were used and statistical significance was considered for *P, 0.05, **P, 0.01; ***P, 0.001; ABHD14B, abhydrolase domain containing
14b; BRK1, BRICK1SCAR/WAVE actin nucleating complex subunit; DYNC1I1, dynein cytoplasmic 1 intermediate chain 1; ERP29, endoplasmic reticulumprotein
29; ETFB, electron transfer flavoprotein beta subunit; GLO1, glyoxalase 1; H1C, similar to Histone H1.2 and Hba1 hemoglobin, alpha 1; Hint1, histidine triad
nucleotide binding protein 1; HSD17B10, hydroxysteroid (17-beta) dehydrogenase; ITPKA, inositol-trisphosphate 3-kinase A; LOC734144, Uncharacterized
protein; MPST,mercaptopyruvate sulfurtransferase; NAc, Nucleus Accumbens; NIT2, nitrilase family, member 2; oxidoreductase); PAFAH1B3, platelet-activating
factor acetylhydrolase 1b catalytic subunit 3; PRKCA, protein kinase C alpha; PSMa1, proteasome subunit alpha 1; PSMa5, proteasome subunit alpha 5; RPS,
ribosomal protein S23; SNI, spared nerve injury; SPR, sepiapterin reductase (7,8-dihydrobiopterin:NADP1; VPS29, retromer complex component.
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3. Results

3.1. Behavioral readouts

Thresholds to mechanical stimulation after SNI installation in SD
rats were low and stable for most of the studied population.
However, in a small number of animals (�15%), after an initial
drop, themechanical threshold recovered and remained elevated
until the end of the experiment. As expected, selected LT and HT
animals presented significantly different mechanical allodynia
thresholds, which were maintained throughout the experiment
(Fig. 1A; weeks3 threshold group: F13,104 5 2.65; P5 0.0031).
Also, no major differences were observed regarding weight
evolution (Fig. 1B). At the end of the experiment, a depressive-like
phenotype (anhedonia) was observed in LT animals, as shown by
a decreased preference for sucrose by these animals in the
sucrose preference test (Fig. 1C; t8 5 3.698, P 5 0.0061).

3.2. Proteomics profile of nucleus accumbens from low-
threshold and high-threshold animals

To understand which proteins play a role in the segregation of LT
and HT animals, NAc from left (contralateral side) and right
(ipsilateral side) hemispheres (Fig. 1D) were characterized
through a nontargeted proteomics approach, the SWATH-MS.

From the SWATH-MS analysis, 3616 proteins were identified,
from which we were able to quantify 2178. A comparative
analysis revealed that 76 and 123 proteins (199 in total) were
significantly upregulated and downregulated in the contralateral
NAc of HT animals in comparison with the contralateral NAc of LT
animals (Fig. 1E). In the ipsilateral NAc, similar effects were found
in 101 proteins, in which 72 and 29 were significantly down-
regulated and upregulated, respectively, in the same HT vs LT
comparison (Fig. 1F). Of these, 21 proteinswere common to both
contralateral and ipsilateral NAc (Fig. 1G), and for most cases,
HT/LT change presented the same direction in the 2 hemispheres
(Fig. 1H). The same strategy was used to compare contralateral
and ipsilateral NAc within LT and HT animals (supplementary Fig.
S1, available at http://links.lww.com/PAIN/B262).

3.3. Enriched biological processes and pathways in low-
threshold and high-threshold animals

Gene ontology enrichment analysis was performed on the 199
proteins identified in the contralateral NAc that had significant
differences betweenHT and LT animals (againstRattus norvegicus
reference list of 21465 proteins).42 The top 10 enriched biological
processes (Fig. 2A; orange bars—fold enrichment; blue lines—log
P value) encompassed, eg, proteasome catabolism, purine

Figure 2.Gene ontology (GO) and KEGG pathways enrichment analysis of the proteins significantly altered in NAc. Biological Process enrichment analysis in the
contralateral (A) and ipsilateral (B) NAc, and KEGG pathways enrichment analysis of the proteins significantly altered in the contralateral (C) and ipsilateral (D) NAc.
All these analyses were performed against Rattus norvegicus reference list of 21465 proteins. Enrichment was confirmed by a statistical Fisher exact test and a
P value of 0.05 as the cutoff. NAc, Nucleus Accumbens.
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ribonucleoside triphosphate biosynthesis, adenosine diphosphate
phosphorylation, and mitochondrial morphogenesis and distribu-
tion (supplementary table S2 for full list, available at http://links.lww.
com/PAIN/B262). On the ipsilateral NAc, 101 proteins were

identified as having differences between HT and LT animals. As
in the contralateral side, enrichment was found in proteasome
catabolism, although all other identified processes were different
from the contralateral analysis (Fig. 2B).

Figure 3.Graphical and quantitative representation of the ubiquitin and proteasome-related proteins altered in the NAc between LT andHT animals. Proteasome-
related proteins enriched in our protein database (A). The heatmap demonstrates that all the proteins are upregulated in LT animals in comparison with HT
animals (B). Specifically, PSMa1 (C), PSMa4 (D), PSMa5 (F) and Psmb3 (E) are reduced in the ipsilateral NAc of HT animals; and PSMa1 (G), PSMa2 (H), PSMa3
(I), PSMa5 (J), PSMa6 (K), and Psmb5 (L) are reduced in the ipsilateral NAc of HT animals. Bar graphs presented as mean6 SEM; Mann–Witney U test and
statistical significance was considered for P, 0.05. NAc, nucleus accumbens; HT, high threshold; LT, low threshold; proteasome subunit alpha 1, 2, 3, 4, and 5
(PSMa1, PSMa2, PSMa3, PSMa4, PSMa5, and PSMa6) and proteasome subunit beta 3 and 5 (PSMb3 and PSMb5).
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The same proteins were analyzed in terms of enriched KEGG
pathways. Again, proteasome-related processes were high-
lighted as being altered in contralateral and ipsilateral NAc
(Figs. 2C andD). Furthermore, the contralateral NAc presented a
large enrichment score in proteins associated with neurodegen-
erative disorders such as Alzheimer disease, Parkinson disease,
and Huntington disease, as well as oxidative stress, long-term
potentiation, and protein degradation (Fig. 2C). On the other
hand, within the ipsilateral NAc, we found alterations in pathways
related to protein degradation, protein synthesis, and energy
production (Fig. 2D) (supplementary table S3—full details avail-
able at http://links.lww.com/PAIN/B262).

From all analyses, we verified that protein degradation and
protein clearance pathways seem to be a key differentiating factor

between LT and HT animals. An additional protein complex-
based gene sets analysis was performed using the Consensus-
PathDB Bioinformatics resource, and the 20S proteasome was
the complex with more identified proteins, namely proteasome
subunit alpha 1, 2, 3, 4, and 5 (PSMa1, PSMa2, PSMa3, PSMa4,
PSMa5, and PSMa6) and proteasome subunit beta 3 and 5
(PSMb3 and PSMb5) (Fig. 3A). Then, we looked to the relative
expression of each protein (Fig. 3B), and all were increased in the
ipsilateral ([PSMa1; Fig. 3C]; [PSMa4; Fig. 3D]; [PSMa5; Fig.
3F]; and [PSMb3; Fig. 3E]) and contralateral NAc of LT animals
([PSMa1; Fig. 3G]; [PSMa2; Fig. 3H]; [PSMa3; Fig. 3I]; [PSMa5;
Fig. 3J]; [PSMa6; Fig. 3K]; and [PSMb5; Fig. 3L]) in comparison
with HT animals. Moreover, an upstream analysis in the ubiquitin-
proteasome system (UPS) demonstrated that E1-like enzyme

Figure 4.Ubiquitin pathway in low-threshold and high-threshold animals. E1-like enzyme (UBA6) was found to be upregulated (A) while E2-like enzymes, UBE2O
(B), UBE2M (C), and UFC1 (D) were found to be downregulated in contralateral NAc HT/LT comparisons. Bar graphs presented as mean6 SEM; Mann–Witney U
test and statistical significance was considered for P , 0.05. HT, high threshold; LT, low threshold.

Figure 5. Schematic representation of the ubiquitin-proteasome system in low-threshold and high-threshold animals. The 26S proteosome degrades mostly
proteins tagged with polyubiquitin chains. Pain-susceptible LT animals presented increased levels of ubiquitin-conjugating enzymes (E2 enzymes), particularly
UBE2M (ubiquitin-conjugating enzyme E2M), UBE2O (ubiquitin-conjugating enzyme E2O), and UFC1 (ubiquitin-fold modifier conjugating enzyme 1) in
comparison to HT animals. A similar bias was observed for both PSMa and PSMb (proteasome subunits a and b, respectively). Upstream in the pathway,
ubiquitin-like modifier activating enzyme 6 (UBA6), an E1-activating enzyme, was found to be reduced in low threshold/high threshold comparisons. CP, catalytic
complex; RP, regulatory complex.
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[ubiquitin-like modifier activating enzyme 6 (UBA6), Fig. 4A] was
downregulated in the contralateral NAc of LT animals (no
ipsilateral differences, data not shown). On the other hand, E2-
like enzymes [ubiquitin-conjugating enzyme E2O (UBE2O) (Fig.
4B); ubiquitin-conjugating enzyme E2M (UBE2M) (Fig. 4C); and
ubiquitin-fold modifier conjugating enzyme 1 (UFC1) (Fig. 4D)]
were upregulated in contralateral NAc.

4. Discussion

To understand the molecular factors associated with the
manifestation of pain and depression in pain susceptible or
resistant rats, we performed a proteomic analysis of NAc-
macrodissected tissue obtained from animals that evolved into
these distinct conditions after SNI. Pain-resistant animals
represented a small subset of SNI animals with no evident
signs of allodynia. Such is aligned with previous results in SD
rats.37,45 Also, HT SNI animals presented higher hedonic
behavior when compared with LT SNI rats, further indicating
that the HT phenotype reflected reduced pain and pain negative
affect. Importantly, because LT and HT are both SNI, the
potential confounding effect of the peripheral lesion on sub-
sequent analysis could be excluded. In addition, although
generalization to pain models other than traumatic neuropathies
was not evaluated, our approach on spontaneously resistant/
susceptible animals is closer to that observed in clinical settings.
For instance, in a well-known study that analyzed pain
trajectories in subjects with a subacute low back pain episode,
susceptible and resistant subjects presented at baseline similar
pain scores, although the former scored worst in mood-related
parameters.12 Interestingly, stronger functional connectivity
between the NAc and the prefrontal cortex predicted the
evolution to CP.12

In our analysis of the NAc’s proteomic landscape from
resistant and susceptible rats, both biological process enrich-
ment and KEGG pathway enrichment analyses strongly pointed
to differences in proteasome-related mechanisms. The protea-
some is a large protein complex responsible for protein
degradation and, therefore, essential for homeostasis. The
most studied form of the proteasome is the 26S (apparent
sedimentation coefficient82); it is constituted by 2 complexes, a
20S catalytic core and 1 or 2 terminal 19S regulatory complexes
that unfold and inject client proteins into the former—see for
review.14,19,26,27,62,74 The 20S is a cylinder-like structure
formed by 2 a-rings and 2 b-rings each made of 7 structurally
similar a or b subunits, respectively (Fig. 5); the former has a
gate function, and the latter contains the proteolytically active
sites (references above). In our study, several a and b 20S
subunits were present in relatively higher amounts in LT animals.
Another set of evidence in our data comes from the analysis of
ubiquitin and related players. The ubiquitination of target
proteins through multilayered and reversible enzymatic reac-
tions acts as a tag for proteasomal degradation.68 Intriguingly,
although ubiquitin-conjugating enzymes (E2), which are critical
to ubiquitin/protein attachment,72 were also augmented in LT/
HT comparisons, specifically UBE2O,76 UBE2M, and UFC1,83

and the ubiquitin-activating enzyme (E1) UBA6, an essential
enzyme to activate ubiquitin,15,40,44 was reduced in LT/HT
comparisons (Fig. 5), which might reflect an UPS upstream
regulation mechanism.

It is not clear if such molecular landscape reflects pain
susceptibility/resistance or is an adaptation to ongoing pain.
However, previous proteomic studies in CP models found no or
limited evidence of alterations in UPS players—33,65,73 dorsal root

ganglia,54 sciatic nerve,48 brainstem,3 and amygdala51—in
neuropathic pain models. Also, a systematic review of proteomic
studies (muscle, blood, saliva, and cerebrospinal fluid) on several
human chronic pain conditions showed a similar picture.41

Surprisingly, proteasome inhibitors, such as a,b-epoxy-ketone
tetrapeptide epoxomicin (intrathecal),64 lactacystin (intrathe-
cal),61 and MG-132 (intrathecal and subcutaneous),1,80,81 have
systematically shown to attenuate allodynic and hyperalgesic
responses in neuropathic pain—see for review.20 In addition, the
proteasome was associated with the manifestation of
depressive-like behaviors. Transgenic mice with a deletion of
the proteasome a3 subunit (a3DN) N-terminal tail—the open-
gate mutant25—contrary to wild-type controls, presented a
reduced depressive-like phenotype in the forced-swimming test
after chronic stress.53 Indeed, proteasomal PSMA7, PSMD9,
and PSMD13 genes have also been associated with depression
and antidepressant response in humans.43,59 Finally, pharma-
cological interventions with upstream UPS inhibitors, such as
UBC9 protein (E2 SUMO-conjugating enzyme) inhibitors, ame-
liorated neuropathic pain symptoms and decreased NaV1.7-
associated currents.38

Altogether, evidence indicates that protein clearance pro-
cesses are enhanced particularly in the NAc of LT animals,
probably because of increased protein aggregation and/or
cellular stress. Indeed, susceptible and resistant animals also
differed in pathways related to neurodegenerative disorders—
such as Alzheimer, Parkinson, and Huntington diseases—see
Ref. 8 for a review on shared pathophysiological mechanisms.
More importantly, by placing our attention on a small subset of
neuropathic but pain resistant rats, wewere able to associate (un)
favorable pain trajectories and the NAc’s UPS.
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