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Automatic Assessment of Pectus Excavatum
Severity From CT Images Using Deep Learning

Bruno Silva , Inês Pessanha , Jorge Correia-Pinto , Jaime C. Fonseca, and Sandro Queirós

Abstract—Pectus excavatum (PE) is the most common
abnormality of the thoracic cage, whose severity is eval-
uated by extracting three indices (Haller, correction and
asymmetry) from computed tomography (CT) images. To
date, this analysis is performed manually, which is tedious
and prone to variability. In this paper, a fully automatic
framework for PE severity quantification from CT images
is proposed, comprising three steps: (1) identification of
the sternum’s greatest depression point; (2) detection of 8
anatomical keypoints relevant for severity assessment; and
(3) measurements’ geometric regularization and extraction.
The first two steps rely on heatmap regression networks
based on the Unet++ architecture, including a novel variant
adapted to predict 1D confidence maps. The framework was
evaluated on a database with 269 CTs. For comparative pur-
poses, intra-observer, inter-observer and intra-patient vari-
ability of the estimated indices were analyzed in a subset of
patients. The developed system showed a good agreement
with the manual approach (a mean relative absolute error
of 4.41%, 5.22% and 1.86% for the Haller, correction, and
asymmetry indices, respectively), with limits of agreement
comparable to the inter-observer variability. In the intra-
patient analysis, the proposed framework outperformed the
expert, showing a higher reproducibility between indices
extracted from distinct CTs of the same patient. Overall,
these results support the feasibility of the developed frame-
work for the automatic, accurate and reproducible quantifi-
cation of PE severity in a clinical context.
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I. INTRODUCTION

P ECTUS excavatum (PE) is the most common abnormality
of the thoracic cage, characterized by the inward displace-

ment of sternum and adjacent costal cartilages. This abnormality
may be present at birth or only start to develop during puberty,
causing psychological effects on the patients, potentially im-
pacting patients’ physical activity due to reduced lung capac-
ity, and even leading to cardiopulmonary complications when
severe [1], [2].

To determine whether repair surgery is needed, a CT scan is
usually performed, and measurements of the patient’s rib cage
(Fig. 1) are extracted to evaluate the PE severity by calculating
the Haller, correction, and asymmetry indices [3], [4]. The Haller
index (HI) assesses the severity of the sternum’s depression, be-
ing defined by eq. (1) as the ratio of the transverse chest distance
(TCD, i.e., horizontal length of the inside of the rib cage) and the
anteroposterior distance (APD, i.e., shortest distance between
the sternum’s posterior part and the spine’s anterior face) [4]. The
correction index measures the amount of correction needed [3],
[5], and is given by eq. (2) as the relative percentage between
the virtual correction distance (VCD, i.e., maximum distance
between the spine and the expected sternum’s position after
correction) and the APD. The asymmetry index is used to
characterize the degree of PE asymmetry [3], and is calculated
by eq. (3) as the ratio between left and right anteroposterior
distances (LAPD and RAPD).

Haller Index = TCD/APD (1)

Correction Index = [(V CD −APD)/V CD]× 100 (2)

Asymmetry Index = RAPD/LAPD × 100 (3)

In clinical practice, such analysis is made manually, which is
tedious, time-consuming and prone to intra- and inter-observer
variability. Indeed, given the CT’s 3D nature, the expert must first
identify the axial slice in which to perform the measurements.
This slice must be located at the point of greatest depression of
the chest anterior wall, so one must navigate through the volume
and assess, using reconstructed sagittal slices, where this point
lies. On the other hand, the positioning of the points for distance
measuring is intimately linked to the experience and subject to
the interpretation of the clinician. Despite the relevance of these
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Fig. 1. Illustration of the PE measurements and relevant keypoints.
CA: center anterior; CP: center posterior; RS: right side; LS: left side;
RA: right anterior; RP: right posterior; LA: left anterior; LP: left posterior.

indices in the context of PE, there is currently no solution to
automate this process.

Hereto, we address this problem by proposing a novel fully
automatic deep learning (DL)-based system using a two-step
keypoint detection approach, aiming to analyze the patient’s
CT and accurately extract the PE indices. In addition to the
integrated framework itself, the present work describes a novel
1D heatmap regression network based on the Unet++ architec-
ture [6] that outperforms its 2D and/or Unet-based counterparts.
Moreover, we extensively validate the proposed system and its
inner modules in a large database with 269 CTs, ultimately
comparing it to clinical experts.

II. RELATED WORK

A. Computed Tomography

Although no past work has focused on the automatic extrac-
tion of clinically used CT-based PE indices, some studies have
suggested new methodologies to assess PE from these images.
On the one hand, some works propose to automatically extract
new metrics, different from those used in clinical practice. Kim
et al. [7], [8] proposed four new indices to quantify the chest
wall deformity, having also developed a fully automatic system
to calculate these indices through various image processing
techniques. The proposed indices showed a good correlation
with HI. Later, the same group proposed two new indices that
provided a linear output for complex chest wall deformities [9].
On the other hand, some authors argue that indices may not
fully represent the chest and therefore propose to bypass their
calculation and assess the severity qualitatively from the CT
volumes directly. Following this idea, Lai et al. [10] proposed
a multi-class classification model based on the VGG network
to classify each CT slice between normal, mild PE, or severe
PE. The final diagnosis is reached by majority voting across
the entire CT volume. The 2D network achieved an accuracy
of 94.76% in images from 42 patients, with the full volume
classification reaching 97.62% accuracy. Although useful for
PE diagnosis, the system only provides a qualitative assessment
of the severity of the chest wall deformity.

B. Alternative Imaging Modalities

CT is the most frequently employed modality for PE assess-
ment. However, exposure to this ionizing radiation may increase
the likelihood of developing a radiation-related pathology, a fact
with increased relevance given that most patients are of pediatric

age. In an effort to decrease this exposure, alternative assessment
methodologies have been studied.

One of these methods is optical imaging, where a scan is
made to the patient’s torso using lasers or structured (white)
light, resulting in a virtual representation of the patient’s torso
topology from which measurements can be made to quantify
the deformity of the chest wall. Glinkowski et al. [11] and
Hebal et al. [12] used this method to calculate an external Haller
index (EHI), obtaining a statistically significant correlation with
the CT-derived HI. Despite this result, EHI is not interchangeable
with HI as it presents a lower average value, thus requiring the
definition of new severity thresholds. Moreover, Scalabre et al.
[13] showed that EHI only presents a significant correlation with
HI for symmetric PE cases. In its turn, optical and CT-derived
asymmetry indices showed good correlation independently of
the PE symmetry [13]. In a similar effort, Uccheddu et al. [14]
reported good correlations between the external (optical-based)
correction index and the (CT-based) correction index. Notwith-
standing, one key limitation of optical methods is that they are
based on the external topology of the patient’s body, causing
the quantified indices to vary according to the patient’s body
fat. To overcome these limitations, Taylor et al. [15] developed
a predictive model to estimate the HI from EHI and patient’s
biometric data, reporting a median error of 8.11% against radio-
graphic HI. Also using optical imaging, Gomes-Fonseca et al.
[16] presented a new methodology to quantitatively follow-up
patients after bar removal following the Nuss procedure.

Another alternative to CT is magnetic resonance imaging
(MRI), which has been shown to be feasible for quantitative
assessment of PE [17]–[19]. Using a fast MRI protocol, Piccolo
et al. [17] showed a good correlation against CT for both Haller
and asymmetry indices. Similar results were achieved by Birke-
meier et al. [18], with no significant differences between CT- and
MRI-derived HI. However, both studies were conducted with a
small study size. More recently, Viña et al. [19] validated their
findings in a larger cohort, demonstrating that both Haller and
correction indices taken from a cardiac MRI show an excellent
agreement with CT measures. Despite these results, the key
limitation of MRI-based methods is the increase in costs, in
required imaging time and in sensitivity to patient’s movement
during acquisition.

III. METHODOLOGY

The proposed framework is divided in three blocks (Fig. 2):
1) the sagittal block (Section III-A), that aims to locate

the axial slice with the sternum’s greatest depression by
feeding a sagittal slice reconstructed from the CT (III-A1)
to a novel 1D variant of a heatmap regression network
based on the Unet++ architecture [6] (III-A2);

2) the axial block (Section III-B), that aims to detect the
eight relevant keypoints (see Fig. 1) in each axial slice
inside a region of interest (ROI) centered on the axial
slice detected by the previous block (III-B1) using a 2D
(Unet++) heatmap regression network (III-B2);

3) the post-processing block (Section III-C), that computes
the keypoints’ positions from the predicted heatmaps,
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Fig. 2. Overview of the proposed fully automatic framework for PE severity quantification.

validates and corrects them if needed, and then extracts
the PE measurements and indices from the axial slice
with the lowest APD distance, while also ensuring the
orthogonality of the measured distances.

A. Sagittal Block

1) Preprocessing: This module aims to prepare a sagittal
image to be fed to the keypoint detection network. A problem of
using a 2D image only is the fact that the patient’s positioning in
the CT bed is unknown, and thus the chosen cut may completely
miss the sternum’s depression, resulting in a non-representative
image of the patient’s chest being fed to the network. To mitigate
this issue, and inspired by [20], [21], one proposes to convert the
3D CT volume into a 2D image through the use of a maximal
intensity projection (MIP). The MIP creates a 2D image by
projecting the voxels that contain the greatest intensity in the
line of the chosen projection plane (i.e. the sagittal plane), thus
flattening the 3D volume into a 2D image but retaining relevant
high-intensity information (like the bones). Instead of projecting
the entire CT, a restrictive MIP is here proposed to obtain an
image with a clearer view of the sternum. In other words, the
MIP is only applied to a ROI in the middle of the CT, avoiding
the appearance of the lateral ribs in the resulting image (Fig. 3).
Since the depression is often relatively centered in the CT, the
ROI chosen for the MIP is 10 cm wide (Fig. 2A-1, the green
highlight is the ROI, and the red plane the CT center plane).

Since a significant variability in slice thickness is found
among CT images, the pixel spacing of the 2D MIP image is
normalized (using nearest neighbor interpolation) to 0.5× 0.5
mm2, guaranteeing the consistency of the network’s input. In
addition, to normalize and highlight useful information in the

Fig. 3. Influence of ROI width and location during MIP extraction. Tak-
ing a single CT as example, each row represents a different ROI width,
and each column assumes a different ROI center in the CT volume (to
simulate off-centered acquisitions). ± = proposed ROI size.

slice, a windowing function between 50 Hounsfield units (HU)
and 400 HU (a typical soft tissue window) was applied, elimi-
nating the details within the lungs but allowing visualization of
both bones and cartilages present at the end of the sternum, as
well as the surrounding tissues and organs.

2) Architecture: The proposed heatmap regression network
is based on the Unet++ architecture [6] (Fig. 4A), adapted to
predict 1D heatmaps only (henceforth named Unet1D++). The
input is the restricted MIP (scaled to 256× 256 pixels, whose
values are normalized to zero mean and unit variance) and the
output are two vectors with size 1× 256: a 1D Gaussian map
that represents the network’s confidence in the location of the
sternum’s greatest depression point and a 1D background map
(i.e., the inverse of the first vector, as in [21]).
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Fig. 4. Keypoint detection network used in the (A) sagittal and (B) axial blocks. The network is based on the Unet++ architecture [6].

In short, the Unet++ is an encoder-decoder type of architec-
ture, consisting of a contraction path and a symmetrical expan-
sion path, with skip pathways containing convolution layers to
reduce the semantic gap between paths, as well as dense skip
connections to better propagate the high resolution feature maps
from the encoding to the decoding path. In opposition to [6], no
deep supervision is employed.

The network’s contraction and expansion paths are each com-
posed of 5 levels, each containing two sequences of convolution
(kernel size of 3× 3 and 1× 3, respectively), batch normal-
ization (BN) and ReLU. An average pooling layer (pool size
of 256× 1) is attached to the end of each contraction level
to horizontally flatten its output to 1× 256 feature maps. This
dimensionality reduction block (pink block in Fig. 4A) allows
the network to focus on predicting the keypoint’s y-coordinate,
as its position along the x-axis does not affect the selected
axial slice. The number of kernels per convolution layer is
doubled after each level, with the initial value set to 32. Between
contraction levels, a 2× 2 max-pooling layer (red arrows in
Fig. 4) is applied to halve the feature maps’ resolution. Similarly,
after each expansion level and on the skip pathways, 1× 2
upsampling is applied to double the resolution of the feature
maps (green arrows in Fig. 4). Each block in the skip pathways
is also composed by the same convolution+BN+ReLU sequence
(1× 3 kernel), whose input results from the concatenation of
feature maps from the skip connections (black arrows in Fig. 4),
dense skip connections (blue arrows in Fig. 4) and the upsampled
1D feature maps from the lower level (green arrows in Fig. 4).

Lastly, one 1× 1 convolution layer is used to regress the two-
vector heatmap output (orange arrow in Fig. 4).

3) Implementation Details: Mini-batch gradient descent was
used (batch size of 8) together with mean squared error (MSE)
as loss and Adam [22] as optimizer. The weights were ini-
tialized from a normal distribution as proposed in [23], and
a l2-regularization (with weight 1× 10−5) was added to the
loss. The initial learning rate was set to 1× 10−3. This value
is reduced to one third when no new loss minimum is found
for 5 epochs. The training limit was set to 150 epochs, with
early stopping set for 10 consecutive epochs without a new loss
minimum. The proposed model has ≈6.2 M parameters.

The ground-truth 1D heatmaps were generated following:

gσ(y) = e−
(y−centery)2

2σ2 (4)

where y is a pixel’s y-coordinate, centery is the labeler’s key-
point y-coordinate, and σ is the Gaussian sigma value, set to
12.5 mm (converted to pixels following input resizing).

During training, data augmentation was applied on-the-fly to
artificially increase the dataset size. Besides translation (between
±15% of the image size), rotation (from −5◦ to 5◦) and scaling
(with a factor between 0.95 and 1.05) transformations, one also
augmented the images by simulating various slice thicknesses
(from 0.5 to 10 mm). The goal is to mimic the variability seen
in CT acquisitions, and decrease the network’s generalization
error. This is accomplished by vertically downsample the image
and then upsample it back using bicubic and nearest neighbor
interpolation, respectively. Each transformation has a 50% prob-
ability of being applied, and the generated sample is verified to
ensure that the keypoint is still inside the augmented image (or
otherwise re-augmented).

B. Axial Block

1) Preprocessing: This module is responsible for the extrac-
tion and preparation of all axial slices contained in a 2-cm wide
ROI centered on the position detected by the previous block
(Fig. 2B-3; the green highlight represents the ROI, and the red
plane the axial slice passing through the detected point). Upon
applying the spatial and intensity normalization described in
Section III-A1, each slice is fed to the axial network.

2) Architecture: This module aims to detect, from each ex-
tracted axial slice, the eight keypoints necessary to compute the
measurements used in the PE indices calculation.

Once again, the Unet++ architecture is employed in a heatmap
regression strategy. Since one intends to predict 2D heatmaps,
the dimensionality reduction blocks are now dropped, kernels
are set to 3× 3, and all pool/upsample sizes are set to 2×2
(Fig. 4B). The input images are resized to 256× 256 pixels,
and the values normalized to zero mean and unit variance. The
network outputs nine heatmaps (of the same size as the input),
with eight of them representing, through a 2D Gaussian, the

Authorized licensed use limited to: b-on: UNIVERSIDADE DO MINHO. Downloaded on April 12,2024 at 10:52:21 UTC from IEEE Xplore.  Restrictions apply. 



328 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022

Fig. 5. Illustration of the valid region for each keypoint.

network’s confidence on the location of a given keypoint, and
the ninth being the background map (i.e., the inverse of the sum
of the other eight heatmaps) [21].

3) Implementation Details: The weight initialization and
regularization, optimizer, loss and training scheme are the same
as in the previous block, and the network has≈9.2 M parameters.
Similarly, the ground-truth 2D heatmaps were generated from
each labeler’s keypoint following eq. (5).

gσ,k(x, y) = e−
(x−centerx,k)2+(y−centery,k)2

2σ2 (5)

where x and y represent a pixel coordinates, centerx,k and
centery,k the ground-truth coordinates of keypoint k, and σ
the Gaussian sigma value, being in this case equal to 7.5 mm.

A data augmentation scheme similar to the previous block was
used, accounting for spatial transformations only and ensuring
the presence of all eight keypoints inside the image.

C. Post-Processing Block

This block (Fig. 2C) comprehends two algorithms that val-
idate (correcting if needed) the detected keypoints, and select,
among the axial slices in the ROI, the one from which to extract
the measures and calculate the indices.

Although the axial keypoint detection network should predict
heatmaps with a single high-confidence peak, if presented with
an input image that differs significantly from those in the training
set, the network may predict a scattered heatmap with small
confidence values or one with two separate high-confidence
peaks (see simulated example in Fig. 2C-5), potentially failing
to correctly predict the keypoint.

To solve this issue, one proposes an algorithm that divides the
image into four distinct regions and automatically detects the
misplacement of the predicted keypoints. These four zones are
set based on a coordinate system defined by the RS-LS axis and
the center of mass (CoM) of the 8 keypoints (Fig. 5), whose
coordinates are calculated using eq. (6), with mk being the
keypoint k’s score (highest value in heatmap k), and xk and
yk the keypoint k’s coordinates on the x- and y-axes.

CoMx =

∑8
k=0 mk xk
∑8

k=0 mk

CoMy =

∑8
k=0 mk yk
∑8

k=0 mk

(6)

After establishing each keypoint’s valid region with respect
to the coordinate system (Fig. 5), if any keypoint is not within
its region, its heatmap is zero-masked with a squared window

Fig. 6. Keypoints’ transformation to ensure orthogonality. Top row:
predicted keypoints and measures; bottom row: constrained ones.

(of size 2 times the Gaussian sigma value, i.e. 15 mm) centered
on the wrongly detected peak, therefore deleting it (Fig. 2C-
5, the applied mask is dashed in red). After this, the CoM is
re-calculated and the keypoints re-validated, being this process
repeated until all keypoints are in their valid regions.

Finally, following the experts’ practice, one must guarantee
that the measured distances are orthogonal to each other (with
the RS-LS axis serving as reference). This is usually not the case,
both due to the patients’ rib cage geometrical variation and due
to the network’s own errors. To guarantee the measurements’
orthogonality, a set of geometrical rules are used to calculate
new points on every axial slice (Fig. 6).

Based on the corrected keypoints, one computes the APD
distance for all axial slices in the ROI, and the one with the
lowest APD (i.e. the one with the sternum’s deepest depression)
is selected to extract the measurements and compute the three
indices (eqs. (1) to (3)). Note that, to compute the correction
index, one must compute the VCD, which may differ depending
on the chosen hemithorax. Thus, one computes two new points,
termed mid-RP and mid-LP, that result from the interception of
the line parallel to the RS-LS axis that passes through point CP
and the lines perpendicular to it that pass through points RA and
LA (Fig. 6). Upon determining these two points, one computes
the distance towards the respective anterior keypoints (RA and
LA, respectively) and the maximum value corresponds to the
VCD.

IV. EXPERIMENTS AND RESULTS

The framework’s training was carried out on a workstation
with a NVIDIA RTX 2080 Ti GPU, with 11 GB of VRAM.

A. Dataset

A total of 269 thoracic CTs, from 92 patients who underwent
PE correction surgery, were retrospectively gathered and used to
implement and evaluate the proposed framework. All CTs were
acquired, using distinct CT scanners over the span of several
years, as part of the preoperative planning performed prior to
the surgery. The data gathering was approved by the responsible
ethical board and informed consent was waived given the study’s
retrospective nature. Each CT was captured with an image
resolution and size ranging from 0.3346 to 0.8223 mm and
512× 512 to 768× 768 pixels, respectively. The slice thickness
varied between 0.5 mm and 10 mm, with a total number of slices
between 24 and 824. Of the 92 patients (mean age, 15.5± 3.8
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Fig. 7. Example axial and sagittal CT slices from 4 patients, and
expert-annotated keypoints. The axial slices represent the slice with
greatest depression of the sternum, and the sagittal ones cut through the
middle of the CT volume. A clear variability in slice thickness (sagittal),
PE severity (axial) and overall image quality (both) can be observed.

yrs, range, 10-36 yrs), 77 were male and 15 female. The dataset
includes 17, 23 and 40 patients with a clinical assessment of
mild, moderate and severe PE, respectively (no information
available for the others).

Fig. 7 exemplifies the dataset’s variability in terms of subjects’
positioning, PE severity, and image acquisition.

All CTs were processed and analyzed using custom MAT-
LAB (MathWorks Inc., USA) scripts, and were annotated by a
pediatric surgeon using the Labelbox platform (Labelbox, CA,
USA). In short, each volume was first analyzed to identify the
sagittal slice that roughly corresponded to the center of the
depression. Here, the expert identified the greatest depression
point. Then, the region delimited by the most prominent area
of the ribs’ cage was identified, and multiple sagittal slices
within this region (spaced 1 cm apart) were extracted. The
keypoint provided by the expert was considered the ground
truth for all sagittal cuts. By extracting multiple sagittal slices
from one CT, one artificially enlarges the dataset. In addition,
given that the network receives as input the sagittal slice from
the middle of the volume (which may not be the center of the
PE deformity), this approach increases the network’s ability to
deal with images from patients with asymmetric PE or those not
centrally positioned in the CT bed (Fig. 7C).

A similar strategy was followed for the axial slices. The valid
region for PE bar placement (from the base of the heart to the base
of the manubrium) was identified, and axial slices spaced 1 cm
apart were extracted. For each slice, the same expert identified
the eight relevant keypoints (Fig. 7).

The dataset was divided, in a patient-disjoint manner, into two
groups: (1) train/validation set used for architecture design and
hyper-parameter tuning (in a 5-fold cross validation), with 74
patients (∼80%); and (2) test set, with 18 patients (∼20%).

B. Evaluation Metrics

The keypoint distance error (KDE) was used to assess the
performance of the sagittal keypoint detection network. In short,
for each predicted slice, one measures the distance between the
predicted axial slice and the ground truth one. This distance was
measured in mm to objectively account for the slice thickness
of each CT.

Similarly, for the axial keypoint detection network, one aver-
ages the KDE for all keypoints in a given slice (in mm, as a 2D
Euclidean distance). This metric was named as mean keypoint
distance error (MKDE) and is formally expressed by eq. (7).
The network’s performance was reported as the average MKDE
over the entire set of predicted images.

MKDE =

∑N
k ‖Pk −GTk‖

N
(7)

where Pk = {xk, yk} and GTk = {xk,gt, yk,gt} represent the
predicted and ground truth coordinates of keypoint k, N is the
number of keypoints (8), and ‖ · ‖ is the Euclidean distance.

C. Sagittal Block

The proposed Unet1D++ network obtained a median KDE of
4.5 mm over the 5-fold cross validation.

Fig. 8 presents the influence of key algorithmic choices (net-
work architecture, type of dimensionality reduction block, and
ROI width for MIP) on the proposed model’s performance.

Regarding the network architecture (Fig. 8A), the proposed
Unet1D++ significantly outperformed all tested variants, with
the exception of the Unet2D1D++ (i.e., single pooling block
after the expansion path) that obtained a similar performance.
However, the former is computationally lighter (∼67% of the
weights). With respect to the dimensionality reduction block
used in the proposed architecture (Fig. 8B), the best average
KDE was achieved while using average pooling blocks, with a
significant difference to most tested variants (with the exception
of the N × 1 convolution layer). Finally, this experiment also
confirmed that the ROI width used for MIP calculation is a
critical parameter, with all variations presenting a significant
difference against the proposed value (10 cm, Fig. 8C).

On the test set, the proposed architecture achieved a median
KDE of 5.00 mm. Fig. 9 presents some detection results for test
samples, when compared to the expert annotations.

D. Axial Block

Table I summarizes the 5-fold cross-validation performance
of the axial keypoint detection network. The results obtained
when replacing the proposed architecture (Unet++) by five
other common architectures are also presented. The details
of each architecture are presented in the supplementary files.
All networks were trained under the same conditions (input
size, heatmaps’ sigma size, weight initialization, data aug-
mentation, optimizer, loss and training scheme). Overall, the
proposed model presented the best performance (i.e. signifi-
cantly lower average MKDE), with consistent results across all
keypoints.

As in Section IV-C, an analysis of key algorithmic choices
(type of windowing function used for image normalization and
type of regression) was carried out to assess the method’s
sensitivity to the defined choices (Fig. 10). In terms of in-
put normalization, three different windowing functions (soft
tissues, bones, and lungs) or no windowing normalization
(unchange) were assessed (Fig. 10A). Overall, the use of a
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Fig. 8. Influence of (A) network architecture, (B) type of dimensionality reduction block, and (C) MIP’s ROI width on the performance of the sagital
block (assessed in a 5-fold cross validation). ∗ p < 0.05, in a Wilcoxon matched-pairs signed rank test against the proposed parameter’s value
(marked with ±). 2D: 2D heatmap prediction; 2D1D: 1D heatmap prediction using a single global horizontal average pooling layer before the last
1×1 convolution layer; 1D: one global horizontal average pooling layer per contraction level (see Fig. 4).

TABLE I
PERFORMANCE OF THE PROPOSED AXIAL BLOCK IN A 5-FOLD CROSS VALIDATION, AND COMPARISON AGAINST OTHER ARCHITECTURES

Values are mean ± standard deviation, presented in mm. ∗ p < 0.05, in a Wilcoxon matched-pairs signed rank test against the proposed architecture.

Fig. 9. Sagittal keypoint detection examples for three representative
samples from the test set (MIP image is shown). The red line represents
the proposed model’s output, and the green line the ground truth.

Fig. 10. Influence of (A) windowing normalization function, and (B)
type of regression on the performance of the axial block (assessed
in a 5-fold cross validation). ∗ p < 0.05, in a Wilcoxon matched-pairs
signed rank test against the proposed choice (marked with ++). DSNT:
differentiable spatial to numerical [24] layer; HM: heatmap matching.

soft tissue function outperformed the other variants. Consid-
ering the regression method (Fig. 10B), the heatmap match-
ing approach (proposed) obtained a significantly lower error
when compared to the numerical coordinate regression [24]
approach (i.e., addition of a DSNT layer at the network’s

output to directly regress the keypoints’ coordinates from the
heatmaps).

On the test set, the proposed axial block achieved an average
MKDE of 3.43 ± 1.69 mm. Fig. 11A presents the errors’
distribution for each keypoint (and their average), and Fig. 11B
illustrates some detection results for test samples.

E. Clinical Validation

This section intends to validate the proposed framework as a
whole, including the post-processing block and the selection of
the correct axial slice for measurements’ extraction.

All CTs from the test set (52 volumes from 18 patients)
were used to carry out this experiment. Using the Labelbox
platform, for each CT, the expert identified the sternum’s greatest
depression point in a sagittal image, and then annotated the
8 relevant keypoints in the selected axial slice. The identified
keypoints were then regularized to guarantee the measurements’
orthogonality, before computing the indices. The above pro-
cedure was done twice by the same expert to obtain data for
an intra-observer analysis. A second observer also repeated the
annotation to assess the inter-observer variability.

Table II compares the indices extracted by our framework
and the expert, summarizing the linear regression (correlation
coefficient, slope and two-tailed paired t-test between indices)
and Bland-Altman (bias and limits of agreement; LOA) results.
Overall, the automatic indices have a remarkable agreement
against the expert’s values. To understand the results’ sensitivity
to each module of the proposed framework, an ablation study is
included in Appendix B of the supplementary files.

To further understand the framework’s performance, the
agreement with the expert was also compared against the inter-
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Fig. 11. (A) Axial keypoint detection examples for three representative test samples (red: proposed model; green: ground truth). (B) Performance
for each keypoint individually, and averaged, on the test set. Outliers were omitted for better visualization.

TABLE II
LINEAR REGRESSION AND BLAND-ALTMAN ANALYSES BETWEEN

AUTOMATIC AND MANUAL INDICES

1Values are mean ± standard deviation [range].

Fig. 12. Bland–Altman analysis of proposed vs. expert (A–C), inter-
(A–C) and intra-observer variability (E–H), for the Haller (A, D, and G),
correction (B, E, and H) and asymmetry (C, F, and I) indices.

and intra-observer variability (Fig. 12). In short, the proposed
framework obtained statistically similar performance when
compared to the intra- and inter-observer variability (p > 0.05 in
a two-tailed F -test, except against the intra-observer agreement
for the Haller index).

Additionally, an intra-patient analysis was performed to as-
sess the framework’s robustness with respect to the CT used as
input, and compare it to the variability obtained by the expert.
The intra-patient analysis consisted in calculating, for each
patient, the error between the indices computed for each CT
and the average value across that patient’s CTs. As a goal, these
variations are expected to be very small since the information
of the patient’s rib cage is the same across all CTs. Importantly,

Fig. 13. Bland-Altman analysis for proposed (A–C) and expert’s (D–F)
intra-patient variability for the Haller (A and D), correction (B and E) and
asymmetry (C and F) indices.

Fig. 14. Linear regression analysis between the automatically ex-
tracted PE indices and those manually extracted by the expert in a
clinical environment. Analysis for the Haller (A), correction (B), and
asymmetry (C) indices. Green line: identity; red dashed line: linear
regression result.

the developed framework demonstrated a significantly higher
reproducibility (in a two-tailed F -test) for all indices when
compared to the expert’s results (Fig. 13).

Finally, the automatic values were compared against the mea-
sures originally extracted by the expert in practice (extracted
from the surgeon’s logs). In the latter, and using a DICOM
viewer, the expert freely navigates the volume and, after se-
lecting the axial slice with the sternum’s greatest depression
point, draws several lines to extract the necessary distances
to calculate the indices (without guarantees of the measures’
orthogonality). For patients with more than one CT available, the
average value of each index extracted by the proposed system
was considered (i.e. sample size of 18). The results are shown in
Fig. 14. The automatic strategy presented a great correlation with
the manually extracted values for all indices (between 0.94 and
0.96), with an average relative absolute error of 4.41%, 5.22%
and 1.86% for the Haller, correction and asymmetry indices,
respectively.
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V. DISCUSSION

In this study, we sought to evaluate the feasibility, accuracy
and reproducibility of a novel fully automatic DL-based frame-
work for PE severity quantification from CT data. By employing
a two-step keypoint detection strategy and a geometrical-based
post-processing method for measurements’ extraction, the sys-
tem demonstrated its ability to identify the relevant anatomical
landmarks and quantify the PE indices with a performance
similar to expert clinicians.

Despite the successful application of similar keypoint detec-
tion methods in the medical imaging field [20], [21], [25]–[31],
to the authors’ best knowledge, no other system (similar or
not) existed in the context of PE. Considering the literature,
our results, as well as the peculiarities and constraints of the
application, three major algorithmic design choices seem to
support the reported system’s feasibility and accuracy.

First, given the limited data available and the notable anatom-
ical variability between PE patients, we chose to employ 2D
convolution neural networks (CNNs) in a two-step pipeline
instead of a volumetric one. Besides reducing the system’s
computational requirements, this strategy effectively reduces the
amount of data needed given the lower complexity of 2D CNNs
and the ability to use multiple slices of a CT as independent
samples (as described in Section IV-A).

Second, the usage of region-based techniques, such as the
restricted MIP image or the ROI-based analysis at the axial
block, help mitigate the issues introduced by a slice-based
processing. Indeed, Fig. 8C demonstrated the usefulness of the
MIP image, a finding corroborated by the perceived influence
of its ROI width on the generated sagittal image (Fig. 3). A
narrow (or single-slice) ROI is sensitive to the body positioning
on the CT bed (with off-center slices potentially having insuffi-
cient information about the sternum and its greatest depression
point; see first row), while a wider ROI leads to reconstructed
images with overlapping details (particularly the lateral ribs
obstructing the visibility of the sternum; see last row). Hence,
a median value is preferred to guarantee enough information to
increase robustness to body positioning without compromising
the visibility of the sternum. In regard to the ROI used for axial
analysis, its usage together with the measurement-based axial
selection strategy (Section III-C) enables the optimization of
the chosen slice on which to extract the indices and increases
the framework’s accuracy and reproducibility over a single-slice
assessment (Appendix B).

Third, the Unet++ architecture used, including our 1D variant,
obtained a superior accuracy compared to other models (see
Fig. 8A, Table I and Fig. 10). In the sagittal block, the proposed
Unet1D++ surpassed its 2D counterpart, a finding simultane-
ously explained by the task at hand (slice localization only)
and by the technique used to create the annotated dataset itself
(Section IV-A). The latter may originate samples whose keypoint
(when defined by a 2D coordinate) appears positioned within the
thorax (for slices deviated from the depression’s center), nega-
tively impacting the 2D network’s convergence. Nevertheless,
if such technique would not be employed, the dataset size (for
the same human effort) would decrease significantly and the

performance also (data not shown). The proposed variant also
surpassed the Unet-based counterpart (as the one used in [21]),
which was later corroborated in the axial block for the 2D
variants (Table I). As stated in [6], the performance gain may
be explained by the modified skip pathways present in Unet++,
that reduce the semantic gap between encoding and decoding
paths, decreasing the complexity of the optimization problem
and leading to a better convergence. When compared to other
architectures (Table I), the lower average MKDE may be linked
to the larger output size, mitigating issues linked with post-
inference interpolation operations. The latter may also explain
the superior accuracy when compared to the numerical coordi-
nate regression approach (applied in previous works [25], [26]),
as Unet-like models already output a high-resolution heatmap
and therefore overcome the need for better spatial generaliza-
tion or output resolution as enabled by the DSNT layer [24]
(Fig. 10B).

When comparing the accuracy for different keypoints
(Fig. 11B), larger errors were found for keypoints not associated
with specific anatomical landmarks (such as RS and LS), possi-
bly resulting from the expert’s lower precision in positioning
them. Nevertheless, it is interesting to note that the results
obtained by the axial keypoint detection network originated no
case of keypoint inversion (i.e., swap of a left/right or ante-
rior/posterior keypoint pair) or other substantial positioning er-
ror on the test set, which ultimately avoided the triggering of the
keypoint correction algorithm (Section III-C) when validating
the full framework (Section IV-E).

In this validation experiment, the system’s automatically ex-
tracted indices showed high correlation to expert values (Ta-
ble II), with small biases and narrow LOAs (Fig. 12A–C).
Interestingly, these LOAs were comparable to the reported inter-
observer variability (Fig. 12D–F) and close to the intra-observer
one (Fig. 12G–I, with statistical significance in a F -test only
for HI). Note, however, the slightly narrower range of values
extracted by our system when compared to the expert (see, for
example, the outliers for the cases with a remarkably high HI in
Fig. 12A). Interestingly, in the intra-patient analysis (Fig. 13),
the system proved to be remarkably reproducible in extracting
the PE indices, clearly outperforming the expert.

Also relevant is the fact that these results were also observed
when the proposed framework was validated against values
extracted by the expert during clinical practice (a real-world
scenario with a distinct measuring workflow, Fig. 14).

Finally, given that novel indices for PE assessment and man-
agement are regularly proposed [32]–[34] and may eventually
be mainstreamed into clinical practice, it is pertinent to highlight
that the proposed framework may easily be adapted to extract
other clinically useful indices as long as they rely on identifiable
anatomical landmarks. These may be added to the annotated
dataset, the proposed model(s) modified to predict the additional
heatmaps and the post-processing block adapted to regularize
and extract the associated indices.

The proposed framework has nevertheless some limitations.
First, and despite the implemented region-based techniques
discussed above, the proposed CNNs models are inherently 2D.
Even though our database is larger than those used in similar
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works from the literature (Section II), this limitation is primarily
linked to the lack of sufficient data for training 3D models.
Second, being a single center study, an independent validation
with data from a distinct center would be valuable to understand
the generalization capacity of the proposed system. It is though
relevant to highlight the large variability in image quality present
in our database (Fig. 7), with images acquired over a large period
with multiple CT machines. Finally, this work targets CT data,
which exposes patients to ionizing radiation. The adaptation of
the proposed framework to work with MRI data would mitigate
this limitation.

VI. CONCLUSION

In summary, a novel fully automatic framework for PE sever-
ity quantification in CT data was presented and validated. Exper-
iments showed the feasibility of the proposed two-step keypoint
detection strategy, and demonstrated the superior performance
of the presented Unet1D++ architecture for one-dimensional
keypoint detection. Automatically-extracted PE indices showed
excellent agreement with those extracted by experts, comparable
to the inter-observer variability and with higher reproducibility
in an intra-patient analysis. Given its automatic nature, the
proposed system has the potential to replace the current tedious
and variability-prone manual procedure, which would ultimately
save healthcare professionals’ time and increase measurements’
reproducibility.
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