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Abstract
Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory

responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also

assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2

-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR

blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of

pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic

anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for

effectiveness.
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The newly emerging coronavirus, severe acute respiratory

syndrome coronavirus-2 (SARS-CoV-2), causes fatal acute

respiratory disease (ARD) resembling that of SARS-CoV

(Chen et al. 2020; Guan et al. 2020; Huang et al. 2020).

The pathophysiology for SARS-CoV-2 has not been well

studied, but likely resembles that of SARS-CoV; the acute

lung injury caused by SARS-CoV infection mainly results

from aggressive inflammation initiated by viral replication

(Wong et al. 2004). Similar to SARS-CoV infection,

SARS-CoV-2 infection also causes increased secretion of

IL-1b, IFN-c, IP-10, MCP-1, IL-4, and IL-10 (Huang et al.

2020). In addition, compared with non-ICU (intensive care

unit) patients, ICU patients with severe disease had higher

plasma levels of IL-2, IL-7, IL-10, GCSF, IP-10, MCP-1,

MIP-1A, and TNF-a, suggesting a possible cytokine storm

associated with disease severity (Huang et al. 2020).

Nevertheless, the causes of these exuberant inflammatory

responses in SARS-CoV-2 infection remain largely

unknown. In this review, we attempt to discuss and sum-

marize possible mechanisms of SARS-CoV-2-mediated

inflammatory responses (Fig. 1). In addition, given that

uncontrolled pulmonary inflammation is likely a leading

cause of fatality in SARS-CoV-2 infection, we also attempt

to speculate possible therapeutic interventions that may be

applied to attenuate inflammatory responses in order to

reduce mortality (Fig. 2).

Inflammation Caused by Rapid Viral
Replication and Cellular Damage

Previous studies have shown that SARS-CoV predomi-

nantly infects airway and alveolar epithelial cells, vascular

endothelial cells, and macrophages. In addition, SARS-

CoV viral particles and viral genome have been detected in

monocytes and lymphocytes (Gu et al. 2005). SARS-CoV-2

uses the same entry receptor, angiotensin-converting
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enzyme 2 (ACE2), as SARS-CoV for infection, suggesting

the likelihood of the same set of cells being targeted and

infected (Zhao et al. 2020; Zhou et al. 2020). The early

onset of rapid viral replication may cause massive epithe-

lial and endothelial cell apoptosis and vascular leakage,

triggering the release of exuberant pro-inflammatory

cytokines and chemokines (Yang 2020). In addition,

SARS-CoV-2 infection may also cause pyroptosis in

macrophages and lymphocytes (Yang 2020). A vast

majority of patients (82.1%) have been found to experience

SARS-CoV-2-induced peripheral blood lymphopenia

(Guan et al. 2020), suggesting possible pulmonary infil-

tration of lymphocytes and/or cell damage through apop-

tosis or pyroptosis (Huang et al. 2020). In SARS-CoV

infection, viroporin 3a has also been shown to trigger the

activation of NLRP3 (NOD-like receptor protein 3)

inflammasome and the secretion of IL-1b in bone marrow-

derived macrophages, suggesting the induction of cell

pyroptosis (Chen et al. 2019), which can cause the release

of large amounts of proinflammatory factors (Fink and

Cookson 2005).

Inflammation Caused by Virus-Induced ACE2
Downregulation and Shedding

ACE2-associated lung injury has been suggested in SARS-

CoV infection (Imai et al. 2008; Kuba et al. 2005); SARS-

CoV S protein can downregulate ACE2 (Glowacka et al.

2010; Wang et al. 2008), and induce the shedding of cat-

alytically active ACE2 ectodomain (Haga et al. 2008; Jia

et al. 2009; Lambert et al. 2005). Loss of pulmonary ACE2

function has been suggested to be associated with acute

lung injury (Imai et al. 2005, 2008; Kuba et al.

2005, 2006); the reduction in ACE2 function can cause

dysfunction of the renin-angiotensin system (RAS) and

enhance inflammation and vascular permeability. In a

murine ARD model, loss of ACE2 expression resulted in

enhanced vascular permeability, increased lung edema,

neutrophil accumulation, and diminished lung function

(Imai et al. 2005). In addition, in human airway epithelia,

ACE2 is constitutively shed by the action of disintegrin and

metalloprotease 17 (ADAM17, also known as TNF-a
cleavage enzyme, TACE) to release enzymatically active

soluble ACE2 (sACE2) (Lambert et al. 2005). Both SARS-

CoV infection and inflammatory cytokines such as IL-1b
and TNF-a can enhance ACE2 shedding (Haga et al. 2008;

Jia et al. 2009; Lambert et al. 2005). The biological

function of sACE2 remains largely unknown. However,

SARS-CoV S protein-induced ACE2 shedding has been

found to be tightly coupled with TNF-a production in cell

culture conditions (Haga et al. 2008). Intriguingly, the S

protein from another coronavirus, HNL63-CoV, does not

induce ACE2 shedding, although the virus also binds to

ACE2 to mediate NHL63-CoV entry (Haga et al. 2008).

HNL63-CoV infection only causes the common cold,

suggesting a potential pathogenic role of sACE2 in SARS-

CoV infection. These previous studies suggest that sACE2
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Fig. 1 Possible mechanisms of SARS-CoV-2-mediated inflammatory

responses. Based on previous studies of SARS-CoV, we separate the

inflammatory responses in SARS-CoV-2 infection into primary and

secondary responses. Primary inflammatory responses occur early

after viral infection, prior to the appearance of neutralizing antibodies

(NAb). These responses are mainly driven by active viral replication,

viral-mediated ACE2 downregulation and shedding, and host anti-

viral responses. Secondary inflammatory responses begin with the

generation of adaptive immunity and NAb. The virus-NAb complex

can also trigger FcR-mediated inflammatory responses and acute lung

injury.
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may be directly involved in the inflammatory responses of

SARS-CoV, and possibly SARS-CoV-2 as well.

Inflammatory Responses Induced by Anti-
Spike IgG (Anti-S-IgG)

Antiviral neutralizing antibodies play an important role in

viral clearance. However, previous studies in animal

models have shown that in SARS-CoV infection, such anti-

S protein-neutralizing antibodies (anti-S-IgG) can also

cause severe lung injury by altering inflammatory respon-

ses (Liu et al. 2019). In SARS-CoV/macaque models, it has

been found that S-IgG present in infected lungs can facil-

itate severe lung injury; in these SARS-CoV S protein-

vaccinated Chinese macaques, acute lung injury was more

pronounced than in unvaccinated control animals that

showed only minor to moderate lung inflammation (Liu

et al. 2019). Consistent with this observation, adoptive

transfer of purified anti-S-IgG-neutralizing antibody (i.v.

injection) to macaques, despite the fact that it reduced viral

loads following subsequent challenge with SARS-

CoVPUMC, led to acute diffuse alveolar damage in all

infected animals, whereas in the control group (injected

with non-specific IgG), only minor to moderate inflam-

mation in the lungs was observed (Liu et al. 2019). This

animal study suggests that despite viral suppression, the

presence of anti-spike protein antibody at the acute stage of

SARS-CoV infection can actually cause severe acute lung

injury that persists until the late stages. Similar observa-

tions of SARS-CoV vaccine-induced pulmonary injury

have also been reported in multiple animal models using

mice and African green monkeys (Bolles et al. 2011; Clay

et al. 2012; Tseng et al. 2012).

Results from these animal studies also appear to mirror

some of the clinical observations in SARS-CoV infected
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Fig. 2 Fc receptor-mediated antibody-dependent enhancement (ADE)

of viral infection and inflammatory responses. A ADE occurs when

antiviral neutralizing antibodies cannot completely neutralize the

virus. Instead, the virus-NAb complex attaches to the Fc receptor

(FcR), leading to viral endocytosis and infection of the target cells.

The outcome is an increase in the overall replication of the virus and

greater disease severity. B Virus-NAb complex binding to FcR can

also activate proinflammatory signaling, skewing macrophage

responses to the accumulation of proinflammatory (M1 or classically

activated) macrophages in lungs. The M1 macrophages secrete

inflammatory cytokines such as MCP-1 and IL-8, leading to lung

injury. C Potential therapeutics based on targeting the Fc receptors to

block SARS-CoV-2-induced inflammatory responses. From left to

right, FcR can be blocked using anti-Fc specific antibodies, small

molecules, or intravenous immunoglobulin (IVIG). The inhibitory

FcR, FccRIIB, may also be targeted to inhibit FcR activation. The

FcRn can also be blocked by specific antibodies or inhibited

competitively through IVIG binding.
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patients: the development of acute respiratory disease

coincides with antiviral IgG seroconversion in 80% of

patients (Peiris et al. 2003). In addition, it was found that

patients who developed the anti-S-neutralizing antibody

faster had a higher chance of dying from the disease; it took

an average of only 14.7 days for the deceased patients to

reach their peak levels of neutralizing antibody activities,

as opposed to 20 days for the recovered patients (Zhang

et al. 2006).

The mechanisms of the anti-S neutralizing antibody-

induced inflammation and lung injury remain only partially

understood. It has been proposed that the presence of S-IgG

prior to viral clearance alters the functional polarization of

alveolar macrophages in acutely infected macaques.

Anti-S-IgG can promote proinflammatory monocyte/

macrophage accumulation and the production of MCP-1

and IL-8 in the lungs. Such anti-S-IgG-initiated proin-

flammatory responses appear to be mediated through the

binding of the virus-anti-S-IgG complex to the Fc receptors

(FcR) present on monocytes/macrophages, as FcR block-

ade reduces the production of inflammatory cytokines (Liu

et al. 2019). It is also possible that such a virus-anti-S-IgG

complex may additionally activate the classical pathway of

the complement system, leading to cellular damages,

although this has not been investigated. Alternatively,

antibody-dependent cell-mediated cytotoxicity (ADCC)

may also be involved.

A major question in SARS-CoV-induced pulmonary

disease is why a small percentage of patients, particularly

those who produce neutralizing antibody early, experience

persistent inflammation, ARD, and eventually succumb,

while other patients survive the inflammatory responses

and clear the virus. We speculate that a possible underlying

mechanism may be related to antibody-dependent

enhancement (ADE) of viral infection that occurs in some

patients with early, sub-optimal antibody activity that

cannot completely clear the virus, but instead leads to

persistent viral replication and inflammation (Fig. 2). ADE

is a well-known virology phenomenon that has been

demonstrated in the infections of multiple viruses such as

dengue, flavivirus, and influenza virus (Halstead and

O’Rourke 1977; Haslwanter et al. 2017; Ochiai et al. 1992;

Takada et al. 2003; Takada and Kawaoka 2003). ADE

promotes viral cellular uptake of infectious virus-antibody

complexes following their interaction with FcR or other

receptors, leading to enhanced infection of target cells

(Halstead and O’Rourke 1977; Haslwanter et al. 2017;

Ochiai et al. 1992; Takada et al. 2003; Takada and

Kawaoka 2003). Thus, interaction of FcR with the virus-

anti-S-IgG complex may facilitate both inflammatory

responses and persistent viral replication in the lungs of

some patients (Fig. 2).

Given that there are very few mechanistic studies on

inflammatory responses in SARS-CoV infection, we focus

only on discussing limited mechanisms that might be

involved. For the convenience of further discussion of

potential therapeutics, here we separate SARS-CoV-

mediated inflammatory responses into two different stages

(Fig. 1): the primary response and the secondary response.

Primary inflammatory responses occur early after viral

infection, prior to the appearance of neutralizing antibodies

(NAb). These responses are mainly driven by active viral

replication, viral-mediated ACE2 downregulation and

shedding, and host antiviral responses, which can lead to

increased cytokine/chemokine production and cellular

damage through apoptosis and/or pyroptosis. Most patients

can tolerate primary inflammatory responses with a posi-

tive outcome of viral load reduction or even viral clear-

ance, followed by receding of inflammation. Secondary

inflammatory responses begin with the generation of

adaptive immunity and the appearance of NAb that further

diminish viral replication. However, as described above,

the appearance of NAb can also trigger FcR-mediated

inflammatory responses and cause severe lung injury. In

SARS-CoV infected patients, the appearance of antiviral

IgG coincides with the onset of acute respiratory disease in

80% of patients (Peiris et al. 2003). A possible underlying

mechanism is likely antibody-dependent enhancement

(ADE) of viral infection that leads to persistent viral

replication and inflammatory responses from macrophages.

Given that most patients can survive primary inflam-

matory responses, we mainly focus on discussing sec-

ondary inflammatory responses that frequently lead to

fatality. There are several potential therapeutic approaches

that may be applied or developed (Fig. 2). These approa-

ches focus primarily on blocking FcR receptor to prevent

virus-NAb complex binding to FcR to trigger inflammatory

responses (Nimmerjahn and Ravetch 2008a, c). First, FcR

can be blocked by specific antibodies to inhibit its activa-

tion. Small-molecule inhibitors can also be developed to

interact with the Ig-binding domains of FcR to block FcR

activation. Second, the inhibitory FcR, FccRIIB, may also

be targeted to inhibit FcR activation. Several FccRIIB
specific antibodies are now being developed for potential

use as novel immune suppressors (van Mirre et al. 2004;

Veri et al. 2007). Third, FcR activation can also be

inhibited by targeting the neonatal Fc receptor (FcRn),

which is essential for extending the half-life of IgG.

Antibody or small molecule-mediated blockage of FcRn

can prevent IgG interaction with FcRn, which can decrease

circulating IgG levels (Nimmerjahn and Ravetch 2008b).

In addition, intravenous immunoglobulin (IVIG) can be

used to saturate the IgG recycling capacity of FcRn and

proportionately reduce the levels of antiviral NAb. IVIG
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can also competitively block the binding of antiviral NAb

to other FcRs (Kurlander and Hall 1986).

Although we mainly focus on strategies targeting virus-

NAb complex binding to FcR, it is possible that the virus-

NAb complex may also initiate inflammatory responses

through the classical pathway of the complement system,

which may be blocked through C5- and C5a-targeted

inhibition (Horiuchi and Tsukamoto 2016).

In sum, at present, there is no effective antiviral therapy

for SARS-CoV-2 infection, which frequently leads to fatal

inflammatory responses and acute lung injury. Here, we

discuss the various mechanisms of SARS-CoV-mediated

inflammation. We also assume that SARS-CoV-2 likely

shares similar inflammatory responses. Potential thera-

peutic tools to reduce SARS-CoV-2-induced inflammatory

responses include various methods to block FcR activation.

In the absence of a proven clinical FcR blocker, the use of

intravenous immunoglobulin to block FcR activation may

be a viable option for the urgent treatment of pulmonary

inflammation to prevent severe lung injury. Such treatment

may also be combined with systemic anti-inflammatory

drugs or corticosteroids. However, these strategies, as

proposed here, remain to be clinically tested for

effectiveness.
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