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a b s t r a c t

On 10 January 2020, a new coronavirus causing a pneumonia outbreak in Wuhan City in central China
was denoted as 2019-nCoV by the World Health Organization (WHO). As of 24 January 2020, there were
887 confirmed cases of 2019-nCoV infection, including 26 deaths, reported in China and other countries.
Therefore, combating this new virus and stopping the epidemic is a matter of urgency. Here, we focus on
advances in research and development of fast diagnosis methods, as well as potential prophylactics and
therapeutics to prevent or treat 2019-nCoV infection.

© 2020 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Coronaviruses (CoVs), which are enveloped, positive-sense,
single-stranded RNA viruses of zoonotic origin and belong to the
family Coronaviridae in the order Nidovirales, are divided into four
genera: alpha, beta, delta and gamma coronavirus. The emerging
CoVs, including severe acute respiratory syndrome coronavirus
(SARS-CoV) and Middle East respiratory syndrome coronavirus
(MERS-CoV), both belonging to beta coronavirus, have caused
recent pandemics of respiratory infectious diseases with high
mortality.

At the end of December 2019, the Wuhan Municipal Health
Commission reported the outbreak of viral pneumonia caused by
an unknown pathogen in Wuhan, China [1]. Subsequently, the
unknown pathogen was identified as a novel coronavirus denoted
as 2019-nCoV by the World Health Organization (WHO) on 10
January 2020 [1]. On 12 and 13 January 2020, the full genomic
sequence of 2019-nCoV, denoted WIV04 strain (GISAID accession

no. EPI_ISL_402124), was released, with about 82% homology to
that of SARS-CoV Tor2 (GenBank accession no. AY274119) and bat
SARS-like coronavirus WIV1 (bat SL-CoV-WIV1, GenBank accession
no. KF367457.1).

By 24 January, this new emerging virus had caused 887
confirmed cases, including 26 deaths, in the original epidemic area,
Wuhan, and other cities in China and in foreign countries. More
seriously, 15 healthcare workers were infected with 2019-nCoV
after close contact with one infected patient, suggesting human-
to-human transmission of 2019-nCoV.

Improved molecular technologies made it possible to rapidly
identify this novel coronavirus. In this review, we summarize ad-
vances made in technologies for rapid diagnosis and identification
of respiratory infections caused by coronavirus, as well as strategies
for research and development of vaccines, prophylactics and ther-
apeutics to combat 2019-nCoV and other emerging coronaviruses
now or in the future.

1. Rapid identification of an emerging coronavirus

Identification of pathogens mainly includes virus isolation and
viral nucleic acid detection. According to the traditional Koch’s
postulates, virus isolation is the “gold standard” for virus diagnosis
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in the laboratory. First, viral culture is a prerequisite for diagnosing
viral infections. A variety of specimens (such as swabs, nasal swabs,
nasopharynx or trachea extracts, sputum or lung tissue, blood and
feces) should be retained for testing in a timely manner, which
gives a higher rate of positive detection of lower respiratory tract
specimens. Then, immunological methods e including immuno-
fluorescence assay, protein microarray, direct fluorescent antibody
assay, MAb-based rapid NP (nucleocapsid protein) detection,
semiconductor quantum dots, and the microneutralization test e
which measure binding between the antigen from the whole virus
or protein of the coronavirus and corresponding antibody, are easy
to operate rapidly but have a lower sensitivity and specificity [3,4].
In addition, other immunological methods, including micro-
neutralization ppNT assay (pseudo-particle neutralization) are
highly sensitive and specific by using the gene coding for the
coronavirus spike protein [5,6]. In the case of 2019-nCoV, viral
research institutions can conduct preliminary identification of the
virus through the classical Koch’s Postulates or observing its
morphology through an electron microscopy [7]. Serology could
also be used to identify the virus when 2019-nCoV-associated an-
tigens and monoclonal antibodies are developed in the future
[7e9]. All the examples above are traditional virus detection
methods.

Viral nucleic acids can also be used for early diagnosis. The
following are some of the new coronavirus detection methods. Poly-
merase chain reaction (PCR) is a molecular biological diagnosis
technology based on the sequence of nucleic acids. The full gene
sequence of 2019-nCoV has now been obtained [10], so patients who
are suspected of being infectedwith 2019-nCoV [8] can be diagnosed
by pan-coronavirus PCR for virus identification [11]. Reverse tran-
scription polymerase chain reaction (RT-PCR) is a technology
combining RNA reverse transcription (RT) with polymerase chain
amplification (PCR) of cDNA. A duplex RT-PCR assay can be used to
detect SARS-CoV and MERS-CoV using pUC57SARS-pS2 and pGEM-
MERSS2 as templates, respectively [12]. Also, samples collected
fromtheupper respiratory tract (oropharyngeal andnasopharyngeal)
and lower respiratory tract (endotracheal aspirate, expectorated
sputum, or bronchoalveolar lavage) of suspected 2019-nCoV patients
can be diagnosed by RT-PCR [8]. Reverse transcription-insulated
isothermal polymerase chain reaction (RT-iiPCR), quantitative real-
time reverse transcription polymerase chain reaction (qRT-PCR),
Real-time RT-PCR (rtRT-PCR), and one-step rtRT-PCR were all further
optimized [13e16]. These optimized RT-PCR methods were used to
detect the MERS-CoV envelope gene (upE) and the open reading
frame 1a (ORF1a) or open reading frame 1b (ORF1b) genes separately.
However, rtRT-PCR was used to identify 2019-nCoV through pre-
liminary and validation detection of its E gene, RNA-dependent RNA
polymerase (RdRp) gene, and N gene [17].

There are other molecular-based detection techniques in addi-
tion to RT-PCR and similar optimized detection techniques. For
example, reverse transcription loop-mediated isothermal amplifi-
cation (RT-LAMP) is an RNA amplification technique that detects
the N gene of MERS-CoV and the ORF1a gene [18]. One-pot reverse
transcription loop-mediated isothermal amplification (one-pot RT-
LAMP) is the optimized RT-LAMP [19], while RT-LAMP-VF is the
deformation of RT-LAMP [20], which is the combination of reverse
transcription loop-mediated isothermal amplification and vertical
flow visualization strips. Both are used to detect the N gene of
MERS-CoV, making detection easier, faster, more efficient and
highly specific. Besides these three methods, reverse transcription
recombinase polymerase amplification assay (RT-PRA) is also used
to identify MERS-CoV [21].

Finally, the following multiplex tests can detect both coronavi-
ruses and other viruses. MCoV-MS (multiplexed CoV mass spec-
trometry) uses an array matrix-assisted laser desorption/ionization

time-of-flight mass spectrometry (MALDI-TOF MS) system to
accurately identify known human coronaviruses (hCoVs) and to
provide phylogenetic evidence for emerging unknown hCoVs [22].
Another new test method, arch-shaped multiple-target sensor, is
used to amplify the target for rapid identification of pathogens in
clinical samples [23]. The method can detect hCoVs, and Zika and
Ebola viruses. The last one, the paper-based colorimetric assay, uses
Pyrrolidinyl Peptide Nucleic Acid-induced silver nanoparticles
(AgNPs) aggregation of pathogen DNA testing [24]. The color
change of AgNPs can distinguish between MERS-CoV, Mycobacte-
rium tuberculosis (MTB), and human papillomavirus (HPV).

2. Research and development of vaccines

The cellular receptors of SARS-CoV and MERS-CoV have been
identified [25,26], and the virion spike (S) glycoprotein, was also
well studied. S glycoprotein includes two subunits [27], S1 and S2,
resulting from cleavage of the one precursor into two parts. S1
determines the virus host range and cellular tropism with the key
functional domain - receptor binding domain (RBD), while S2
contains two tandem domains, heptad repeats 1 (HR1) and heptad
repeats 2 (HR2), to mediate virus-cell membrane fusion. It is
believed that the fusion process is similar to that of HIV-1 [28]; for
example, when S1 binds to the receptor on the cell membrane, the
fusion peptide at the N terminus of S2 inserts into the cell mem-
brane, then three HR1s attach to each other in parallel as a trimer,
followed by binding of three HR2s separately onto the outside of
the trimer to form a 6-helix bundle, thus bringing virus and cell
membranes close to each other to trigger fusion.

As the major vaccine target, the S protein has been evaluated in
different types of vaccines against infection by CoVs [29]. Apart
from the inactive whole virus particle [30], live attenuated virus
with gene deletion [31] , four more vaccines whichmainly contain S
protein were studied. These include a virus-like particle which
incorporated S protein into hepatitis virus or influenza virus protein
[32,33]; virus vectors, such as modified vaccinia virus Ankara
(MVA) or Adenovirus carrying S protein [34,35]; S protein subunit
vaccine, like RBD-based protein [29,36]; and DNA vaccine which
encodes the full length or part of the S protein gene [37,38]. Most of
them have been tested in mouse models and showed the ability to
elicit neutralizing antibodies. The first SARS-CoV DNA vaccine was
tested in humans only 19 months after the virus sequence was
published [38], while the DNA vaccine GLS-5300, the first MERS-
CoV vaccine, went to clinical trials in 2016 [39]. In addition to
these conventional vaccines, Liu et al. analyzed the Tcell epitopes of
SARS-CoV and MERS-CoV, revealed the potential cross-reactivity of
the coronaviruses, and assessed the possibility of developing uni-
versal vaccines against coronavirus infections [40].

Most CoVs share a similar viral structure, similar infection
pathway, and a similar structure of the S proteins [41], suggesting
that similar research strategies should also be applicable for the
2019-nCoV. For example, the study of MERS-CoV vaccines was
accelerated by virtue of strategies that had been established for
SARS-CoV [42]. It has been reported that the 2019-nCoV is also
genetically close to SARS-CoV [43,44]. Therefore, to predict whether
vaccines developed for SARS-CoVwill also be effective against 2019-
nCoV infection, the full length S protein sequences from the 2019-
nCoV, a SARS-CoV, and two genetically similar bat CoV strains
were selected for alignment (Fig.1). The results indicatedmore than
50% homology of the viruses. However, the most variable residues
are located in S1, a critical vaccine target, implying that neutralizing
antibodies thatwere so effective against SARS-CoV infectionmay fail
to recognize the 2019-nCoV, and that multiple amino acid differ-
ences at the receptor binding motif may modify virus tropism, a
possible reason for cross-species transmission.
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Fig. 1. Comparison of S protein sequences of coronaviruses. Multiple alignment of full amino acid sequences of S protein from 2019-nCoV (GISAID accession no. EPI_ISL_402124),
SARS-CoV (GenBank accession no. AY278489), bat-SL-CoVZC45 (GenBank accession no. MG772933.1), and bat-SL-CoVZXC21 (GenBank accession no. MG772934.1) was performed
and displayed with clustalx1.83 and MEGA4 respectively. ‘‘-” represents the unconfirmed amino acid residues, “.” represents the identical amino acid residues. The functional
domains were labeled based on the research on SARS-CoV [41]; light blue box was for RBD region; dark blue box for receptor binding motif (RBM); light purple box for HR1; and
dark purple box for HR2, respectively. Double underlined regions in HR1 and HR2 are fusion cores, which are critical regions responsible for the formation of stable six-helical
bundles between HR1 and HR2.
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However, several bottlenecks typically delay the approval of
vaccines to prevent CoVs infection. First, a lack of proper animal
models for evaluating vaccine efficacy. Second, there are limitations
from the S protein itself, such as mutations in the neutralization
antibody epitopes in S protein that can cause virus escape [45], or
non-neutralization antibody epitopes in vaccines that may elicit
antibody-mediated disease enhancement (ADE) [46]. Third, DNA
vaccines may recombine with other viruses. Fourth, pre-existing
immunity may eliminate the vaccine by removing the general hu-
man virus vectors [47]. Finally, there is the problem of return on
investment whichmay be slow and, hence, inhibit investments and
slow down the clinical study.

Jiang and colleagues have demonstrated that RBD in the SARS-
CoV S protein is the major target of neutralizing antibodies in
SARS patients and is able to induce highly potent neutralizing
antibody responses and long-term protective immunity in animal
models. It contains 6 different conformational neutralizing epi-
topes, to which a series of mouse monoclonal antibodies (mAbs)
with different neutralizing activity were generated. Interestingly,
these mAbs exhibited cross-neutralizing activities against diver-
gent SARS-CoV strains isolated from SARS patients at different
stages of SARS epidemics in 2002e2004 and those from palm civets
[48e52]. This group has also shown that these SARS-CoV-RBD-
specific neutralizing mAbs can cross-neutralize bat SL-CoVs, such
as bat SL-CoV-W1V1 [53], indicating that these antibodies may also
cross-neutralize 2019-nCoV. Most importantly, RBD-based vaccine
could induce neutralizing antibody responses and protection
against SARS-CoV infection in the immunized animals, while it did
not elicit ADE or other harmful immune responses, unlike the virus-
inactivated vaccines or full-length S protein-based vaccines as
discussed above. Therefore, this RBD-based SARS vaccine is ex-
pected to be safer and more effective than the vaccines targeting
other sites in S protein. Jiang and Du’s groups have collaborated
with Hotez’s group at Baylor College of Medicine in Houston and
Tseng’s group at the University of Texas Medical Branch at Gal-
veston, Texas, USA in development of an effective and safe vaccine
at the late stage of preclinical study [54]. The antibodies induced by
this vaccine candidate are expected to cross-neutralize 2019-nCoV
infection. If it is confirmed, this vaccine candidate has the great
potential to be further developed promptly in clinical trials in both
China and the United State through the continuous collaborations
among the four groups of Drs. Hotez, Tseng, Du, and Jiang [55].

3. Research and development of therapeutics and
prophylactics

At the present, no specific antiviral therapy has been approved
for treatment of infection by human CoVs. As development of
vaccines and compounds for prevention and treatment of infection
have been brought to priority status by WHO and governments
[56], numerous drug studies have been done or are moving for-
ward. Some of them focus on the CoV fusion/entry process either by
inhibition of S1 mediated virus attachment or by blocking of S2
mediated virus-cell membrane fusion, and some of them interfere
with viral replication [57].

3.1. CoV fusion/entry inhibitors

Based on the previous experience in developing the HIV-1
fusion inhibitor SJ-2176 [58], Jiang et al. discovered the first anti-
SARS-CoV peptide (SC-1) from the HR2 domain of SARS-CoV S
protein S2 subunit. SC-1 could bind onto the HR1 domain to form a
six-helical bundle (6-HB), blocking S protein-mediated membrane
fusion and inhibiting SARS-CoV infection [59]. When MERS-CoV
was circulating in human populations in 2012, following similar

mechanistic design, Jiang’s research group developed another
peptide, designated HR2P, which was derived from the virus HR2
region as well and effectively inhibited MERS-CoV infection [60].
The further modified version of HR2P, HR2P-M2, presented even
better anti-MERS-CoV activity and pharmaceutical properties.

Development of broad-spectrum pan-CoV fusion inhibitors
would be an ideal way to copewith epidemics or pandemics caused
by emerging HCoVs. The conservative amino acid sequence of the
HR1 region across different CoVs has the potential to be a target
domain for development of an inhibitor. Continuing to work on the
HR1 and HR2 domains, Jiang’s group discovered that the peptide
OC43-HR2P, derived from the HR2 domain of HCoV-OC43, broadly
inhibited fusion bymultiple HCoVs. By optimization of this peptide,
a pan-CoV fusion inhibitor, EK1, was generated. It could form a
stable six-helix bundle (6-HB) structure with HR1s and showed
significantly improved fusion-inhibitory activity and pharmaceu-
tical properties [61]. The alignment of S protein in Fig. 1 exhibited
100% identity at the HR2 domains between the 2019-nCoV and
SARS-CoV; however, they found 7 amino acid changes in the fusion
core of the HR1, located in the EK1 binding motif. Fortunately, the
substitutions were conservative replacements which would not
dramatically disrupt the interactions between EK1 and HR1,
meaning that EK1 would still have the potential to be an effective
inhibitor for 2019-nCoV infection.

3.2. CoV S-RBD-specific neutralizing antibodies

So far, most neutralizing antibodies recognize the RBD in the S
protein S2 of CoVs. Compared with the high mutation rate in the S1
protein, S2 is much more conservative, thereby decreasing the off-
target risk caused by amino acid replacement [62], and also
bypassing the special epitopes that may cause ADE [63]. This means
that the cocktail of monoclonal antibodies binding to different
epitopes of RBD would be more desirable for therapeutic purposes
[64]. For treatment, the monoclonal antibodies are from a human
source or are humanized antibodies, isolated or generated with
various approaches. For example, wild-type mice were immunized
with soluble recombinant RBD containing the S protein. Then
mouse antibodies were humanized and isolated, or transgenic mice
were directly immunized, to express human versions of the anti-
bodies [50,65,66]. However, direct cloning of single B cells from
human survivors, used in combination with the phage-display
antibody library, could provide authentic human antibodies. Until
now, it should be noted that many neutralizing antibodies have
been successfully discovered for treatment of SARS-CoV [67] and
MERS-CoV infection [45,68,69]. These antibodies have all been
described favorably in the literature [29,70,71]. A similar approach
is known as single chain fragment variable (scFv) library screening,
whereby the use of RBD as a bait protein allows some neutralizing
antibodies to be screened out from non-immune humans [72,73].

Antibodies effective at inhibiting SARS-CoV infection should
also have the potential for treatment of 2019-nCoV as well, as long
as the binding motif in RBD shares the same sequences. The new
neutralizingmonoclonal antibodies would also be isolated from the
patients using the established techniques.

3.3. CoV replication inhibitors

Similar to developing vaccines, drugs effective against other
RNA viruses were also repurposed for CoVs. Two major types of
drugs being nucleoside analogues and immunomodulators. So far,
the most common therapies tried in patients with CoVs are riba-
virin, lopinavir/ritonavir, IFN, or their combinations [74]. Despite
the antiviral activity observed with in vitro studies, the clinical ef-
fect was not consistent [75], in that ribavirin does not prolong the
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survival of SARS-CoV patients [74,76], while lopinavir/ritonavir plus
ribavirin seemed to improve clinical outcomes for SARS patients
[77], but the improvement was not confirmed in MERS-CoV pa-
tients. IFNs showed effective at inducing antiviral activity against
both SARS-CoV and MRES-CoV, but without significant improve-
ment in the outcomes for the patients [78,79]. In addition to the
drug regimens used in patients, numerous drugs developed for the
treatment of infection with CoVs were thoroughly discussed in the
literature [57].

However, replication of an RNA virus usually generates progeny
viruses with a highly diverse genome. Recombination also easily
takes place between viral genomes [80], and these gene level
changes may result in drug resistance if the mutations affect the
drug target domain. Development of drugs is also hampered by
various evaluation methods and animal models used for testing
drug activity among different labs worldwide, which could post-
pone selection of the best drug for clinical trials.

4. Conclusion and prospects

Taken together, 2019-nCoV is a new coronavirus, and like SARS-
CoV and MERS-CoV, it belongs to Betacoronavirus. Both SARS-CoV
and MERS-CoV were able to spread around the globe and posed a
major challenge to clinical management and a great threat to public
health. Similarly to SARS-CoV and MERS-CoV, based on the moni-
toring and scientific forecast, 2019-nCoV may cause a worldwide
threat to public health. Over the years, research on CoVs has
resulted in multiple strategies for diagnosis, prevention and treat-
ment of CoV infection. This brief review has demonstrated that
such an achievement could very well apply to 2019-nCoV, or
indeed, any newly emergent CoV in the future. At present, many
companies engaged in the development of biologicals have mar-
keted nucleic acid detection kits for 2019-nCoV, such as the new
coronavirus nucleic acid detection kit (double fluorescence PCR
method) from Shuoshi Biotechnology. Currently, however, no
diagnostic test kit is available for the detection of antibodies to
2019-nCoV.
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